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ABSTRACT 
Motivation: The inference of functional networks of genes relies on 
the integration of multiple data and knowledge bases. Moreover, 
there is a need to develop methods to automatically incorporate 
prior knowledge to support the prediction and validation of novel 
functional associations. One such important knowledge source is 
represented by The Gene Ontology (GO)  and the many model 
organism databases of gene products annotated to the GO.  We 
investigated quantitative relationships between the GO-driven 
similarity of genes and their functional interactions by analyzing 
different types of associations in S. cerivisiae and C. elegans. 
Results: This study demonstrates that interacting genes (including 
regulatory and protein-protein interactions) exhibit significantly 
higher levels of GO-driven similarity in comparison to random pairs 
of genes defined as negative interactions. Significant associations 
were identified using annotations from the three GO hierarchies, but 
it was confirmed that the Biological Process hierarchy may provide 
more reliable results for all of the types of interactions and organ-
isms studied.  Statistical analyses indicated that GO-driven similarity 
represent a relevant and relatively accurate resource to support 
prediction of functional networks in combination with other re-
sources. 
Availability: Supplementary information, including data sets gener-
ated are available at: 
http://ijsr32.infj.ulster.ac.uk/~e10110731/GO-Inter 
Contact: fj.azuaje@ieee.org 

1 INTRODUCTION  
The reliable prediction of functional networks of genes may be 
achieved by integrating multiple types of data sources, such as 
gene expression, phylogenetic profiles and high-throughput pro-
tein-protein interaction experiments. This is necessary because 
such individual sources may be considered as weak prediction 
models due to their limitations in terms of predictive accuracy and 
coverage. Several studies have reported significant links between 
different types of genomic data sets, as well as techniques, e.g. 
machine learning, to combine them and improve prediction quality 
for relatively simple model organisms, such as yeast (Jansen et al., 
2003; Lee et al., 2004).  Furthermore, it is crucial to integrate prior 
knowledge resources, such as annotation databases and literature, 
for not only building advanced functional classifiers, but also to 
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assist in the validation of technique-independent predictions, e.g. 
detecting potential spurious associations.   

The Gene Ontology (GO)  is one such source of prior knowl-
edge, which is becoming the de facto standard for annotating gene 
products (The Gene Ontology Consortium, 2001). It has been pro-
posed as a gold standard to assess the quality of several classifica-
tion systems using, for example, expression data (Al-Shahrour et 
al., 2004). Moreover, information extracted from GO-driven anno-
tation databases have been applied for making de novo predictions 
of gene function in relatively simple organisms (King et al., 2003).   

The GO has been proposed as a tool for measuring similarity 
between genes. Previous research showed significant relationships 
between semantic similarity of pairs of genes and their sequence-
based similarity (Lord et al., 2003). Also we have evaluated rele-
vant quantitative relationships between GO-driven similarity and 
gene expression correlation (Wang et al., 2004).  GO-driven clus-
tering algorithms based on such approaches have been recently 
reported (Wang et al., 2005).  Moreover, they have provided the 
basis for developing tools that may facilitate the identification of 
relevant partitions from clustering, using, for example, GO-driven 
cluster validity indices (Bolshakova et al., 2005). 

Prior to the integration of a predictive resource, Res, is first nec-
essary to assess its predictive relevance and reliability in relation to 
data sets of known positive and negative interactions (Jansen and 
Gerstein, 2004).  In this case the hypothesis to prove is: Can in-
formation extracted from Res be applied to distinguish pairs of 
interacting genes (positives) from those that have not shown evi-
dence to be interacting (negative)?   

The application of GO-driven annotation information to support 
the prediction of functional networks of genes has not been rigor-
ously investigated.  Jansen et al. (2003) integrated different ge-
nomic data sets including annotations derived only from the GO 
Biological Process hierarchy to predict protein-protein (PP) inter-
actions.  The GO-driven similarity of a pair of genes was used as 
an indicator of PP interactions in yeast.  Between-gene similarity 
was calculated by identifying the set of GO terms shared by the 
two sets of annotations.  For a given database of protein pairs, the 
total number of protein pairs sharing the same set of annotations 
was used as an estimator of similarity.  Thus, the lower this fre-
quency value, the more similar the gene pair under consideration.  
They found that lower term counts were correlated with a higher 
likelihood of finding two proteins in the same complex. Neverthe-
less, such a similarity assessment approach does not fully exploit 
relevant topological and information content features that may be 
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useful for meaningfully estimating between-gene similarity. In 
some cases genes that are annotated to closely related but distinct 
GO terms may actually exhibit no similarity. 

Using annotations from the three GO hierarchies: Molecular 
Function (MF), Biological Process (BP) and Cellular Component 
(CC), we sought to assess relationships between the GO-driven 
similarity of a pair of genes and their functional interactions.  This 
study aimed to investigate the feasibility of applying GO-driven 
similarity to support the prediction of functional interactions of 
genes, including physical and regulatory interactions, in S. cere-
visiae and C. elegans.  Two key questions addressed were: a) Can 
GO-driven similarity be applied to estimate the functional coupling 
of genes, such as gene expression co-regulations and other physical 
and non-physical interactions and b) Can such a knowledge be 
used in combination with other resources to improve the prediction 
process?  Our hypothesis is that the GO-driven similarity of a pair 
of genes may be used as a relevant indicator of functional interac-
tion. 

The following section describes the data sets analyzed: 1) A 
data set of annotated co-regulatory interactions from yeast, 2) An 
extensive, high-quality functional gene network for yeast, and a 3) 
high-quality PP interaction data set from C. elegans.  This is fol-
lowed by a description of the methods applied to measure similar-
ity using GO annotations, its links to the identification of interact-
ing pairs of genes and a statistical assessment of the predictions. 
Results for the three data sets are presented. The final section dis-
cusses the main contributions and limitations of this study, poten-
tial applications and future research. 

2 MATERIALS 

2.1 Data sets 
Gene co-regulation in S. cerevisiae (CoReg) 
This data set originated from a comprehensive collection of anno-
tated regulons compiled by Simonis et al. (2004). Their data set 
comprised more than 1400 pairs of gene-factor associations re-
trieved from the TRANSFAC (Wingender et al., 2000) and 
aMAZE (van Helden et al., 2001) databases and literature 
searches.  More than 13000 pairs of co-regulated genes were then 
extracted from these data.  These pairs comprised the CoReg refer-
ence data set analyzed in this investigation. 

 
Functional network of yeast genes (FunNet)   
This data set was obtained from an extensive, high-quality func-
tional gene network investigated by Lee et al. (2004).  Unlike Co-
Reg data set, FunNet comprises different types of functional asso-
ciations: Mediated and non-mediated by physical interaction, i.e. 
PP, regulatory, etc. This network was inferred by integrating di-
verse, high-quality functional data sets: mRNA coexpression, 
gene-fusions, phylogenetic profiles, literature co-citation and pro-
tein interaction experiments, with the Kyoto Encyclopedia of 
Genes and Genomes (KEGG) database used as the gold standard. 
A sub-sample of 19216 pairs of genes representing the most reli-
able interaction predictions were analyzed in this study (supple-
mentary paper offers additional information). 
 
 

PP interactions in C. elegans (PPInt): 
This data set represents another level of complexity, in which 860 
PP interactions, including a few self-interactions, were obtained 
from the Worm Interactome (WI5) map. The selected data set, 
from now on referred to as PPInt, contains the highest-confidence, 
published interactions from WI5 (Li et al., 2004).  

2.2 The GO 
The GO hierarchies: MF, BP and CC encode annotation terms that 
describe the role played by a gene product, the biological goals to 
which a gene product contributes and the cellular localization of 
the gene product respectively. Such vocabularies of annotation 
terms (one for each hierarchy) and their relationships are repre-
sented by directed acyclic graphs, in which each annotation term 
may represent a “child node” of one or more “parent nodes”. There 
are two types of child-to-parent relationships in the GO: “is a” and 
“part of” types. The first type is defined when a child annotation 
term is a subclass of a parent term. The second type is used when a 
parent has the child as its part. This study takes advantage of both 
types of links as justified elsewhere (Lord et al., 2003). The GO 
comprises annotation terms supported by different types of evi-
dence codes, such as the TAS (Traceable Author Statement) and 
IEA (Inferred from Electronic Annotation) codes. The TAS code 
refers to annotations supported by peer-reviewed papers. In con-
trast, IEA annotations are based on predictions automatically ob-
tained from sequence similarity searches, which have not been 
reviewed by curators. Detailed information on GO-driven annota-
tion databases, their development and evidence codes supported is 
available at www.geneontology.org. The reader is also referred to 
(Azuaje et al., 2005) and (Wang et al., 2004) for an introduction to 
some of the predictive data analysis applications of the GO.  

2.3 GO annotation databases 
The pairs of interacting genes in each of the above data sets were 
described by their GO annotations.  IEA annotations were excluded 
from these analyses due to their lack of reliability. The March 2005 
database releases of the Saccharomyces Genome Database (SGD) 
and WormBase (WB) provided the GO annotations for these data 
sets, which are available at www.godatabase.org. All of the CoReg 
interacting pairs (13412) were composed by genes in which both 
genes had at least one GO annotation from all hierarchies. FunNet 
had 19003 pairs of interacting genes with both genes assigned to at 
least one GO annotation under all GO hierarchies.  In the PPInt 
data the numbers of interacting pairs of genes in which both genes 
were described by at least one GO annotation were 188, 296 and 
77 pairs under the MF, BP and CC hierarchies respectively. The 
Supplementary Section offers a more detailed description of the 
data sets analyzed. 

3 METHODS 

3.1 GO-driven similarity 
In order to estimate the similarity of a pair of genes, gk and gp, one 
must first understand how to calculate the similarity between the 
terms belonging to the sets, Ak and Ap, used to annotate these 
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genes. Different methods, known as information-theoretic ap-
proaches, have been previously studied to measure ontology-
driven similarity (Lord et al., 2003; Azuaje et al., 2005). Unlike 
traditional edge-counting techniques, these methods are based on 
the assumption that the more information two terms share in com-
mon, the more similar they are. The Lin’s similarity model, for 
example, has shown to produce both biologically meaningful and 
consistent similarity predictions (Lord et al., 2003; Wang et al., 
2004) in comparison to related approaches. Given terms, ci ∈ Ak 
and cj ∈ Ap, the between-term Lin’s similarity is defined as: 

 

 

(1) 

where S(ci,cj) represents the set of parent terms shared by both ci 
and cj, ‘max’ represents the maximum operator, and p(c) is the 
probability of finding a child of c in the annotation database being 
analyzed. It generates normalized similarity values between 0 and 
1.  Thus, given a pair of gene products, gk and gp, with Ak and Ap 

comprising m and n terms respectively, the between-gene similar-
ity, SIM(gk , gp), may be defined as the average inter-set similarity 
between terms from Ai and Aj:  
 

 

(2) 

where sim(ci,cj) may be calculated using (1).  This and other simi-
larity approaches, as well as their relationships with sequence-
based similarity and co-expression, have been investigated in 
(Lord et al., 2003) and (Wang et al., 2004). The results reported in 
this paper are based on the calculation of gene similarity based on 
(1) and (2). The last section discusses some of the limitations of 
this technique. 

3.2 Linking GO-driven similarity and functional in-
teractions 

GO-driven similarity values were calculated for all the annotated 
pairs in the data sets described in Section 2. These data represented 
our sets of true positive interactions, which were statistically ana-
lyzed to show significant relationships with GO-driven similarity.  
In order to illustrate such links, similarity values from these sets of 
true positive interactions were compared to similarity values gen-
erated by a set of negative interactions, i.e. pairs of genes not 
showing evidence of interaction. Thus, a set of “non-interacting 
genes” was produced as follows. For a given data set, P, compris-
ing M true positive interactions, a set N, with M negative interac-
tions was built by randomly pairing genes from P. Moreover, the 
resulting sets were verified to ensure that newly formed pairs were 
not included in P. This process is also equivalent to the idea of 
randomly permutating the lists of GO annotations, Ak, 1 ≤ k ≤ M, 
describing the genes in P to form a new set N. One has to take into 
account that some of the pairs included in N may actually be false 
negatives (true positives) and this might influence the comparisons 
performed. However, at least with regard to the data sets analyzed 
(evidence available) this could not be demonstrated.  The final 

section of this paper further discusses this factor.  The resulting 
data sets N represent a valid approximation of counter-examples, 
which are essential to explore potential associations between func-
tional interactions and GO-driven similarity.  Furthermore, the 
random effects and variability linked to this data sampling proce-
dure may be reduced by generating K independent N sets.  These K 
sets may be then analyzed as an aggregated set, N’, consisting of K 
x M pairs of (non-interacting) genes. 

Fundamental relationships between GO-driven similarity and 
the existence/absence of functional interactions were estimated by 
comparing similarity values exhibited by P versus values observed 
in N’.  Their similarity value distributions for each of the problems 
described in Section 2 and for all of the GO hierarchies were ana-
lyzed.  Differences between P and N’ were summarized by esti-
mating their respective mean similarity values. The significance of 
their differences was tested by applying Student’s t-Test.  The 
relevant null hypothesis tested was that these mean similarity val-
ues originated from the same sample, i.e. there are no significant 
differences between these mean values.  This relatively simple task 
provided key insights into relationships between the degree of 
similarity of pairs of genes and the likelihood that these genes are 
functionally interacting.  

After identifying significant differences, the capacity of GO-
driven similarity to predict functional interactions (as a single pre-
dictive source) was analyzed. Given a similarity value, SIM(gk, gp), 
and a pre-defined predictive similarity threshold value, GOS-Th, 
genes gk  and gp are said to be an interacting pair (positive interac-
tion) if SIM(gk,gp) ≥ GOS-Th.  Some of these predictions will ob-
viously be false positive interactions.  Therefore, the next task was 
to estimate the rate of false predictions.  This was done by estimat-
ing the proportion of the number of interactions that would occur 
by chance to the number of pairs correctly predicted as positive 
interacting pairs.  This represents the ratio of the number of false 
positive predictions, Ro, to the number of true positives predic-
tions, R. Ro was estimated using the mean number of interacting 
pairs obtained from the K data sets, N, i.e. the total number of in-
teractions observed in N’ divided by K.  This is related to the prob-
lem of estimating the decisive false discovery rate, which has 
shown to be a robust and conservative estimator of the probability, 
P, of detecting spurious associations (Bickel, 2005). Thus, when 
this rate of false predictions, P, is closer to ‘1’, the stronger the 
evidence to suggest few or no true positive interactions. That is, 
lower P values indicate stronger evidence to support the validity of 
the positive interactions detected by the GO-driven similarity 
method. P values were calculated for the data sets described above 
using different GOS-Th values. This analysis allows one to have a 
better idea about how many false positive predictions may poten-
tially be made when applying the GO-driven similarity method as a 
single prediction model. 

4 RESULTS 
The analysis tasks described above were implemented with K = 10, 
10 and 100 for the CoReg, FunNet and PPInt data sets respec-
tively.  This relatively small number of randomly generated sets, 
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N, was selected due to computing power limitations. Similar re-
sults were obtained for other comparisons involving other K sets, 
N. Moreover, the relatively large number of gene pairs included at 
least in the first two data sets should contribute to the reduction of 
the bias and variability of the estimations. The supplementary sec-
tion provides additional information and results.   

4.1 Results from CoReg 
Table 1 summarizes the differences between the sets P and N’ with 
regard to their mean similarity values.  The high t values obtained 
suggest significant differences (p < 0.001) for all GO hierarchies. 
Histograms are used in Fig. 1 to illustrate differences of the simi-
larity value distributions for P and one of the data sets N in con-
nection to the BP hierarchy.  Interacting pairs of genes in general 
exhibit higher similarity values than non-interacting pairs. Similar 
trends were obtained for other N sets and hierarchies (see Supple-
mentary Section). This indicates the feasibility of applying GO-
driven similarity to support the distinction of co-regulated from 
non-co-regulated pairs of genes.  Fig. 2 shows the estimated prob-
abilities, P, that such predictions are false as a function of the 
predictive threshold, GOS-Th.  
 
Table 1. CoReg data set. Differences between interacting and random, non-
interacting pairs of genes in terms of their GO-driven similarity. SE: stan-
dard error of the estimated mean. 

GO Hier-
archy 

True Positives 
(Mean±±±±SE) 

Random Pairs  
(Mean±±±±SE) 

t values 

MF 1.8E-01 ± 2.4E-03 1.1E-01 ± 5.4E-04 2.8E+01 

BP 2.3E-01 ± 2.3E-03 1.3E-01 ± 4.5E-04 4.3E+01 

CC 3.1E-01 ± 2.3E-03 2.4E-01 ± 6.2E-04 2.9E+01 

 

Fig. 1. CoReg: Distribution of similarity values from P and one of 
the N data sets under the BP hierarchy. 

 

Fig. 2. CoReg: Rate of false positive predictions, P, as a function 
of the GOS-Th for all GO hierarchies. P estimates the probability 
of predicting spurious associations. 
 

4.2 Results from FunNet 
Table 2 summarizes the differences between the sets P and N’ in 
terms of their mean similarity values.  The high t values obtained 
suggest significant differences (p < 0.001) for all GO hierarchies. 
Fig. 3 illustrate differences between the similarity value distribu-
tions from P and one of the data sets N with regard to the BP hier-
archy. Interacting pairs tend to exhibit higher similarity values than 
non-interacting pairs. Similar properties were obtained for other N 
sets and hierarchies (see Supplementary Section). This suggests the 
feasibility of using GO-driven similarity to help to distinguish 
interacting from non-interacting pairs of genes (including physical 
and non-physical interactions). Fig. 4 shows the estimated prob-
abilities, P, that such predictions are false as a function of the pre-
dictive threshold, GOS-Th. 
 
Table 2. FunNet: Differences between interacting and random, non-
interacting pairs of genes in terms of their GO-driven similarity. SE: stan-
dard error of the estimated mean. 

GO hier-
archy 

Interacting pairs 
(Mean±±±±SE) 

Random pairs  
(Mean±±±±SE) 

t values 

MF 4.9E-01 ± 3.3E-03 2.0E-01 ± 8.4E-04 8.8E+01 

BP 5.4E-01 ± 2.7E-03 2.8E-01 ± 6.9E-04 9.2E+01 

CC 5.7E-01 ± 2.4E-03 3.4E-01 ± 6.4E-04 9.0E+01 

  
 



draft
Predictive integration of Gene Ontology-driven similarity and functional interactions 

5 

 
Fig. 3. FunNet: Distribution of similarity values from P and one of 
the N data sets under the BP hierarchy. 
 

Fig. 4. FunNet: Rate of false positive predictions, P, as a function 
of the GOS-Th for all GO hierarchies. P estimates the probability 
of predicting spurious associations. 

4.3 Results from PPInt 
Table 3 summarizes the differences between the sets P and N’ with 
regard to their mean similarity values.  The high t values obtained 
also suggest significant differences (p < 0.001) in connection to all 
GO hierarchies. Fig. 5 depicts differences of the similarity value 
distributions from P and one of the data sets N regarding the BP 
hierarchy. Again the interacting pairs tend to produce stronger 
similarity values than non-interacting pairs. Similar trends were 
obtained for other N sets and hierarchies (see Supplementary Sec-
tion). This may suggest the potential of GO-driven similarity to 
assist in the differentiation of interacting and non-interacting pairs 
of proteins in more complex organisms. Fig. 6 presents the esti-
mated probabilities, P, that such predictions are false as a function 
of the predictive threshold, GOS-Th. 
 
 

Table 3. PP-Int: Differences between interacting and random, non-
interacting pairs of genes in terms of their GO-driven similarity. SE: stan-
dard error of the estimated mean. 

GO hier-
archy 

Interacting pairs 
(Mean±±±±SE) 

Random pairs  
(Mean±±±±SE) 

t values 

MF 2.7E-01 ± 2.3E-02 1.6E-01 ± 1.7E-03 5.0E+00 

BP 1.9E-01 ± 1.4E-02 1.2E-01 ± 8.1E-04 4.9E+00 

CC 3.9E-01 ± 4.6E-02 2.0E-01 ± 3.6E-04 4.0E+00 

 
 
Fig. 5. PP-Int: Distribution of similarity values from P and one of the N 
data sets under the BP hierarchy. 

Fig. 6. PP-Int: Rate of false positive predictions, P, as a function of 
the GOS-Th for all GO hierarchies. P estimates the probability of 
predicting spurious associations. 

5 DISCUSSION AND CONCLUSIONS 
Relationships between GO-driven similarity, based on an informa-
tion theoretic approach, and different levels of functional interac-
tion were investigated.  Three complexity levels were explored: 
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Co-regulation in S. cerevisiae, a more comprehensive set of func-
tional associations (including both physical and non-physical inter-
actions) in the same organism and a smaller set of PP interactions 
in C. elegans.   

We focused our investigation on previously published, high-
quality annotated interactions, which represented the reference data 
sets for this study.  The GO terms used to describe each pair of 
genes did not include electronically inferred annotations. We con-
centrated on a GO-driven similarity assessment approach that has 
previously shown to be strongly related to sequence-based similar-
ity and gene co-expression (Lord et al., 2003; Wang et al., 2004).  
This paper demonstrated significant relationships between the GO-
driven similarity shown by a pair of genes and their interaction.  
This pattern was remarkably observed under all hierarchies.  This 
supports the hypothesis that the GO-driven similarity of pair of 
genes may be applied to support the prediction of functional inter-
actions (including co-regulatory and PP interactions).  Additional 
experiments, which are summarized in the Supplementary Section, 
also suggested that the degree of GO-driven similarity may be 
consistent with interaction likelihood scores of pairs of genes as 
reported by Lee et al. (2004) based on a comprehensive, integra-
tive prediction strategy.  Our research does not of course suggest 
that this approach is sufficient and necessary to detect relevant 
interactions.  Similarly, we did not aim to argue that it may repre-
sent a more effective prediction model than existing approaches. 
However, this investigation offered evidence to motivate the appli-
cation of this functional similarity measure as a complementary 
predictive resource of functional interaction. This, in combination 
with other sources, such as gene co-expression and different inter-
action prediction models, may support more accurate and biologi-
cally-meaningful predictions.  Integrative prediction models such 
as those reported by (Lee et al., 2004) and (Jansen et al., 2003) 
may be benefited from incorporating this knowledge-based source.   

Figs. 1, 3 and 5 highlight two important protein groups. The first 
represent protein pairs that are not similar based on their GO terms. 
These proteins may be true negatives, but also they may represent 
pairs that are actually interacting even though their available anno-
tations are unrelated. This could be the case for proteins without 
GO annotations or for those involved in processes not properly 
described by this ontology.  The second set corresponds to similar 
proteins pairs in relation to their GO-driven annotations. As dem-
onstrated above, such similarity may offer strong evidence for the 
presence of functional interaction. This may also be merged with 
other post-genomic sources of evidence, such as genome-wide in-
situ hybridization, to improve the detection of false positive inter-
actions. Thus, the GO-driven similarity approach may also com-
plement experimental approaches to determining false positives. In 
the case of metazoan organisms, e.g. C. elegans, the GO-driven 
similarity approach is much more difficult to assess as the function 
of a protein can be related to its tissue- or organ-specific expres-
sion patterns. It would be important to integrate gene expression 
and tissue localization information to complement GO-driven simi-
larity. Moreover, it might be possible to infer tissue localization 
from GO annotations. This dimension, which is not considered in 
unicellular organisms, underlies the complexity of this prediction 
task and the importance of implementing integrative, module-
based approaches to interactome prediction.  

P.H Lee and D. Lee (2005) recently integrated ontology-driven 
similarity information as part of their modularized network learn-

ing method (MONET).  They first recognized modules of interre-
lated genes using gene expression correlation and MIPS (Munich 
Information center for Protein Sequences database) annotations.  
Bayesian networks were then inferred from the detected modules 
that successfully predicted relevant gene regulation networks in 
yeast.  Ontology-driven similarity was required to aid in the identi-
fication of clusters of genes on the basis of their MIPS annotations. 
Between-gene similarity was estimated using the between-term 
Resnik’s method (1995), which is also an information-theoretic 
approach. But unlike Lin’s method, Resnik’s method generates un-
normalized similarity values ranging from 0 to infinity.  Moreover, 
previous research has shown that Lin’s technique may outperform 
Renisk’s and other information-theoretic approaches (Lin, 1998).  
For example, Lin’s method may generate similarity values highly 
correlated with human assessments of similarity in different appli-
cation domains. Between-gene similarity based on GO-driven 
Lin’s method may reflect significant relationships with gene co-
expression. Such relationships may be represented in a more con-
sistent and meaningful fashion in comparison to Resnik’s approach 
(Wang et at., 2004). Wang et al. (2005) proposed a GO-driven 
hierarchical clustering method based on Lin’s technique, which 
recognized significant functional modules relevant to several re-
sponses to stimuli in yeast. Their method may complement P.H. 
Lee and D. Lee’s method (2005) for the detection of functional 
modules based on GO-annotations. A recent study on global pre-
diction of regulatory networks in yeast found that more 12% of 
genetic interactions included genes with identical GO annotations 
(Tong et al., 2004). It also found that over 27% of the interactions 
comprised similar annotations sets based on a conservative esti-
mate of similarity, which approximated the degree of annotation 
overlaps.  Our investigation provides further evidence of the poten-
tial of GO-driven similarity information to facilitate the prediction 
of functional interactions. Moreover, we have shown that these 
relationships may go beyond the regulatory level and may support 
applications involving uni- and multi-cellular organisms. 

The similarity value distributions, significant differences and the 
potential to reduce the probability of detecting spurious associa-
tions encourage further investigations.  Moreover, we believe that, 
even when significant results were obtained, our assessment may 
actually be under-estimated. This is because many of the pairs of 
genes included in the randomly-generated sets (“true negatives”) 
might indeed be part of more comprehensive collections of true 
positive interactions not included in this study. Some of them 
might also become true positive interactions in the future with the 
emergence of new experimental and validated evidence.  This fac-
tor also suggests that the differences and relationships identified 
could be stronger. Nevertheless, the relatively large amount of 
interacting pairs included in the Co-Reg and FunNet data sets may 
contribute to the reduction of such noise sources and possible bias.  

One of the major challenges for predicting interaction maps is to 
remove false-positives interactions. False positives predictions can 
be caused by technical or biological factors. The former have no 
biological meaning and come from technical limitations such as 
the number and the strength of phenotypic tests used for two-
hybrid screenings or purification steps realized for complex identi-
fication by mass spectrometry. The latter ones may originate from 
proteins that actually interact but which are not expressed in the 
same tissues or organs. For example, it was estimated that about 
25% to 50% of the genome-wide protein-protein interaction pre-
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dictions reported in many high-profile publications actually repre-
sent false positive interactions (Edwards et al., 2002). 

This investigation also estimated probability values, P, that of-
fered relevant insights into these relationships. These indicators 
may help us to further assess the predictive ability of the GO-
driven similarity method to detect valid interactions for different 
prediction similarity thresholds, GOS-Th. Figs. 2, 4 and 6 suggest 
that in general the larger the GOS-Th, the lower the probability of 
making false positive predictions.  But it also highlights the fact 
that many of the false positive interaction predictions show high 
level of similarity (including the maximum similarity).  This may 
also be explained by the difficulties in creating exact true negative 
data sets. As expected, the greater the GOS-Th value, the lower the 
number of positive interactions (both true and false) made. But in 
some cases the reduction in the number of false positive interac-
tions was visibly smaller than the reduction of the number of true 
positive interactions (Fig. 2, for example).  This means that the 
results obtained cannot be used as conclusive evidence to indicate 
that higher GOS-Th should necessarily produce more accurate 
predictions. They suggest that there is a tendency to reduce the 
number of false positive interactions by applying more rigorous 
thresholds.  The results obtained also confirm that the higher the 
GOS-Th the more limited the predictive coverage of the model, i.e. 
the higher the possibility of missing true positive interactions. This 
property is perhaps more visible in the CoReg and FunNet data 
sets.  In the case of the PP-Int data set, a stronger inverse propor-
tional relationship between P and GOS-Th was observed under the 
BP and CC hierarchies.  Predictors based on annotations from the 
MF hierarchy showed to be the most unreliable for this data set. 
The lowest P value was obtained when the predicted interactions 
were based on the maximum GOS-Th.  

The lack of clearer, more regular response patterns may also be 
explained by the difficulties in building more reliable data sets 
representing true negative interactions as discussed above.  Figs. 2, 
4 and 6 confirm that, in principle, it would be possible to imple-
ment more accurate predictive models with higher GOS-Th values, 
but at the risk of detecting a considerable number of false positive 
interactions and of reducing predictive coverage. Predictions based 
on annotations from the BP hierarchy are indicated as the most 
reliable and accurate predictions for the three data sets analyzed. 
These and the results shown in Tables 1 to 3 cannot be considered 
as surprising findings. However, they highlight the potential of 
using GO-driven similarity as an alternative weak prediction 
model, which may complement other weak predictive resources, 
e.g. gene co-expression and high-throughput interaction identifica-
tion techniques.  It also opens opportunities to incorporate prior 
knowledge to support the automated assessment or validation of 
predictions derived from large-scale studies. 

Another aspect that deserves further research is the design of be-
tween-term similarity assessment methods that can reflect biologi-
cal features in a more intuitive and meaningful way. For instance, 
one would expect that SIM(gi,gj) = 1, when gi = gj or when Ai 
represents the same set of annotations Aj. However, this is not al-
ways the case when the method described by (2) is applied. It will 
define, for instance, SIM(gi,gj) = 0.5, for gi = gj when Ai is de-
scribed by m > 1 annotations.  This factor may also have contrib-
uted to an under-estimation of the significance of the results. Al-
ternative methods should be evaluated to address these inconsis-
tencies, which are particularly critical when dealing with data sets 

involving self-interactions. In order to address such a limitation we 
are currently evaluating an alternative between-gene similarity 
approach that selectively aggregates maximum between-term simi-
larity values (Azuaje et al., 2005).   

As part of future research we will analyze other functional data-
bases related to the organisms considered in this paper as well as 
others such as mouse.  We will incorporate other knowledge re-
sources, such as KEGG databases, to further assess the applica-
tions and implications of GO-driven similarity assessment for sup-
porting large-scale interactome prediction studies. 
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